Memory Exploitation
UDURRANI

I have divided this project in 2 phases.
# - Exploit

# - Malware (Not in this writeup)

I will cover exploit first since not many security products deal with exploits.
They are mostly focusing on malware. Keep in mind you don't need to master all
the concepts. Just a few fundamental concepts so you get a feel of how things work.
Before we really get into exploit, lets cover few things that would help us as we

move forward.

To understand Security, you should understand Computer architecture,

especially Memory and CPU.
*xCPU*x;

We call it the centerpiece / the brain of the computer. It consists of transistors
and channels through which current flows. Every type of CPU has its own
language i.e. machine language. Machine language is very complex in nature.
Thats why we have programming languages, where a compiler or an assembler
converts a program to machine language. This component takes care of executing

instructions. Let's say instructions of a currently loaded program / process.

UDURRANI 1



x Inskruckion???xx

Instruction 1s a sequence of 0's and 1's that describes an operation e.g. ADD or
COMPARE. Instructions could be carried out in multiple ways: Read, Write,

Calculate, Jump , Add numbers, Test, Signals etc.

Instructions could have data they act on, which is stored in a register. This i3
the fastest way for CPU to access data even though CPU has limited number of
registers. A register is a storage device that can "store," or "remember a single
word. Its very important to understand this distinction i.e. instructions (code) and
data. Data normally flows as variables in a programming language. If I ask you to
add 10 to another integer value e.g. 10 + 30. What does that say? 10 and 30
represents data and ADD would represent an instruction. Computers take this sort
of distinction very seriously. We will get into it later but for now just remember data

and code.

This data has to flow from storage to cpu through some sort of a transmitting
means. This is done via BUS. An instruction is represented as a binary, 16, 32, or

64 bits wide. Before execution it must be decoded. This is handled by Control Unit.

*xSo lebs remember:xx

€@ CPU's life is to fetch, decode and execute. In some cases it can store.
€ Data & code separation
@ Transmission is done via a BUS

€ Data & Code creates the actual output i.e. the execution flow.

UDURRANI 2



I just mentioned fetch and execute. ? Answer 1s
simple, the storage. Didn't I say that registers are used for storage? indeed! But
registers are limited and I would like to put more data some where. What about the
main memory i.e. RAM? Thats right. RAM can store much more. This means
CPU can fetch instructions from the memory and execute them. CPU 1s the biggest

consumer of computers main memory.

**x MEMOR Y *x;

This component 1s responsible for storing data and instructions. Unlike
registers memory 1is not as close to the CPU. Registers are great if one has to use a
data value quiet often in the program. Its not necessary that instructions or data
should be adjacent to each other, it could be completely random, hence random
access memory (RAM). Memory is used to hold data and software for the
processor.

Memory follows a concept of flip-flop. Memory holds a value of 1 when
capacitor is charged and 0 when dis-charged. Capacitor 1s like a bag that holds or
stores charge. In other words it holds electrons. To store 1, electrons move towards
the bag 1.e. bag 1s filled with electrons. To store 0, its emptied out. You may ask who
will charge and dis-charge? CPU and memory controller (Please lookup memory
controller). Transistor and a capacitor are paired to create a memory cell, which
represents a single bit of data. The capacitor holds the bit of information ->a 0 or

a 1. Transistor doesn't store data, its used for signal amplification.

Enough about electronics :)

UDURRANI 3



The memory holds two types of information: data items and programming
instructions. The two types of information are usually treated differently, and in
some computers they are stored in separate memory units. Memory location is
identified by an address 1.e. if you would like to get to a location you need that
address. To speed things up another component called slave memory or cache

memory could also be used. Let me try and put more sense into it.

Lets assume, CPU 1is a Small property in Boston MA, However CPU has very
limited space, as property in Boston is very expensive. So we buy a larger property
outside of Boston, some where in Western MA, where we can store a lot of items.
(Let's call this new property in Western MA, memory). Property in Western MA 1s
much cheaper than Boston but for CPU to get items from western MA (memory)

could take a long time.

What do we do?

We need to buy a small place where we can put some of the items that CPU

require more frequently. We can buy another property somewhere between Boston
(CPU) and Western MA (MEMORY). Let’s say the 3rd property is in Worcester
MA. Worcester MA 1s the cache :)

UDURRANI



Western MA

Distance

Worcester

Distance

.

CPU (Boston) needs an item called foo. CPU ( Boston) calls the cache (Worcester) and asks for foo?

CPU ( Boston): Is foo available?

Cache (Worcester): Yes (This equals cache hit)

CPU( Boston): Is foo available?
Cache (Worcester): Nope! (Cache Miss)

Boston

CPU is not very happy about it because it has to go all the way to Western MA to get foo. Traffic conditions ...

CPU( Boston): gets foo. At the same time it keeps one copy of foo in the cache for next time.

Worst case, even memory doesn't have it, this is really bad because now it has to be paged-in from the SLOW disk.

FAST -- TO -- SLOW

CPU <--> L1 Cache <--> L2 Cache <--> Memory <--> Disk

Grab and execute from cache

DO YOU HAVE WHAT

I NEED?777

If NOT available in cache, CPU goes to the memory

UDURRANI

Lt

Undetermined!



*xSTACK**

The program stack is an area of memory that supports the execution of
functions. When a function is called, a stack frame is created and pushed onto the
program stack. When function terminates, stack frame is popped off the stack. A
stack pointer usually points to the top of the stack. A stack base pointer (frame
pointer) 1s often present and points to an address within the stack frame, such as the
return. The stack buffer has an associated data item, the stack pointer, SP, which
contains the address of the top of the stack. This address is of course increased (or
decreased) when data is pushed (or popped). The addresses of the different data
items stored in the stack are simply determined by their distances (offsets) to the
stack pointer. When main() starts, its local variables are allocated in the stack. When
the function returns, it destroys its local variables and the function arguments by

popping them from the stack.

A data element 1s placed on top of the stack by a PUSH instruction; a data
element is removed from the top of the stack by a POP instruction if the operand
size 1s 16 bits, then the SP register is incremented/decremented by 2. If the

operand size 13 32 bits, then the ESP register is incremented/decremented by 4

€c

® push instruction will decrement SP

0

€ pop instruction will increment SP

// Stack pointer points to the top of the stack

// make ebp new esp

UDURRANI 6



mov




*xHea P**

When memory is dynamically allocated, it comes from the heap. Heap
memory is dynamically allocated at run-time by the application. Let's allocate some

memory to foo.
// foo in this case is a pointer.

Allocated memory on the heap MUST be released or freed after use. To free

above allocated memory we use free function call.

Linked lists and queues are enabled using heap section of the memory.
Program Counter / Instruction Pointer:

PC or EIP 1 IP I RIP plays an important role. CPU includes a program
counter whose output 1s interpreted as the address of the instruction that should be
executed next in the current program. This way CPU knows what instruction to
execute next. This 1s a very important concept so please make sure you do more re-
search on this one.

A little about registers: A register is a storage device that can store or

remember a value. F.g

™ General and data-segment addressing: , EAX, EBX, ECX, ESF, EBP, ESI, EDI
@ Segment registers: CS, DS, ES, SS ....

UDURRANI 7



I would suggest to look them up and get some info regarding registers.

VULNERABILITY:

Programming is an art. Some developers are good at it and some are not.
Either way they make mistakes, even the best of developers. Writing code is no
joking matter. Most production code has to interface with other code, other
libraries, files, memory etc. This means data is passed between all these
components. If this data is passed incorrectly or handled incorrectly, this could
have shitty results. If I ask you to have a buffer that can hold 10 bytes

Using a language like G or C++ you would do something like.

char array[10]  // Where variable name is array.

What if you try to put data into this array that exceeds the actual size of
buffer??? What happens to the exceeded data??? In this situation extra data can
overflow into adjacent memory locations corrupting valid data. This sort of a
behavior 1s called Stack Overflow. Important thing to remember is: Stack cannot
handle this situation and could lead to change of execution flow of the program.
Program itself would have no clue what the hell is going on. Changing program
control flow execution is a dangerous matter.

Overflow can happen in heap region as well, allowing an attacker to overwrite
heap-stored data. If allocated region of the memory is freed or deallocated more
than once, could cause code injection. Another example could be use after free.

char *foo = (char *)malloc(10)

free(foo);

UDURRANI



What if same memory region is used again 1.e after free'ing it or for some

reason it went out of scope. You may ask how would it get out of scope if we

haven't free'd the memory? On the other hand, what if you don't free the memory?

What would happen? In that situation you can run into a memory leak.

E.g. if we allocate memory and never free it, it could cause the machine to reboot or result in an exploit.

for(b=0;b<=10;b++){

printf("Allocating ...\n");
char *a = (char *)malloc(100);

}

In this case I have 11 blocks and allocated 1110 bytes without freeing them.

In C++ we use:

myClass * foo = new myClass;

Later the memory could be free’d by using.

delete(foo);

Let’s look at a simple buffer overflow. We have total of 3 functions:

void udurrani()

{

printf("68 65 6C 6C 6F \n");

}

function address

::ZBEEEE::::> 55

400557: 48 89 e5
40055a: bf 34 06 40 00
400557 : e8 bc fe ff ff
400564: 920
400565: 5d
400566: c3
int main()

foo();

return 0;

Code Flow: main() calls foo() only, it doesn't call udurrani().

push
mov
mov
callq
nop
pop
retq

%rbp

%rsp,%rbp
$0x400634,%edi
400420 <puts@plt>

%rbp

udurrani(),

foo() and main()

void foo()

{

function address
400567:
400568:
40056b:
40056f:
400573:
400576:
40057b:

function address

400592:
400593:
400596
40059b:
4005a0:
4005a5:
4005a6:

ISSUE: foo() doesn't do any size validation i.e. if array is 24 bytes or not
Question: What if user provides more than 24 bytes???

Can this behavior write to adjacent memory location? Can we change the flow and call the next function i.e.

UDURRANI

char arrayl[24];

scanf("%s", array);

printf(“end\n")

55

48 89
48 83
48 8d
48 89
bf 44
b8 00

55
48
b8
e8
b8
5d
c3

e5

ec 20

45 €0

c6

06 40 00
00 00 00

89 €5
00 00 00 00
7 ff Ff ff
00 00 00 00

push
mov
sub
lea
mov
mov
mov

%rbp
%rsp,%rbp

$0x20,%rsp a
<=0@x20(%rbp) ,%rax—

%rax,%rsi
$0x400644,%edi
$0x0,%eax

push  %rbp

mov %rsp,%rbp
mov $0x0,%eax
callg 400567 <foo>
mov 4$0x0,9seax
pop . %rbp

retq !

main() calling foo at 400567

udurrani()???

9



If I run this code and provide input that is size of(array), this will call the function foo().

foo() runs and gives control back to main()
main() ends and gives control back to the 0S.

I am using 64 bit arch where each register is 8 bytes. In function foo() we can say:

Registers + Buffer + Return = 40 bytes.

Registers = RBP, RIP, RSP etc

Its time to overRun the buffer and overwrite the return address.

Lets write 40 characters e.g. the char ‘A’ followed by the address of udurrani().

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA) - (400556)

it should be \x40\x05\x56

Since its a hex address,
. Endian-ness is the way your

Please make sure you know about the endian-ness i.e. you are using little endian or big endian arch
computer store words in the memory. I am using little endian so let’s reverse this address

= Least significant byte gets stored in the smallest address.

Little-endian =

You can run this using any scripting language or run it manually.

Result: Function udurrani() gets called.
foo() prints the string end

udurrani() prints hex value that says hello

A

end
68 65 6C 6C 6F

A

If I further debug it or get a backTrace, will show something like the following. NOTE: 41 in hex = letter ‘A’

0x4141414141414141 in ?7?

Jump to the invalid address stated on the next line ()
at 0x4141414141414141: 7?7 0x0061414141414141 in ?? ()
by 0x4141414141414140: ?7? 0x0000000100000000 in ?? ()

0x00000000004005d0 in ?? ()

Summary: Bounds checking is very critical when you write programs. Going out-of-bounds leads to un-known behavior and attackers can
take advantage of such scenarios. In such conditions program itself has no clue whats going on. Buffer Overflow can lead to

- Denial of Service (Critical in case of servers e.g. Web, FTP, DB servers)
- Subversion of execution flow (Very critical since this could result in arbitrary code execution)

Dangling pointers: pointers that points to invalid data

Consider the following as a function thats trying to return a string
Let’s name it func() function address
4004e6: 55 push  %rbp
e 4004e7: 48 89 e5 mov %rsp,%rbp
char arrayl[10]; . 4004ea: 48 8d 45 f0 lea  -0x10(%rbp),%rax
st rcpy(array,“udurrani"); N 4004683 48 ba 75 64 75 72 72 movabs $0x696e617272756475,%rdx
. 4004f5: 61 6e 69
return(array); < 4004f8: 48 89 10 mov  %rdx, (%rax)
. 4004fb: c6 40 [ 00 movb  $0x0,0x8(%rax)
. 40047f: b8 00 00 00 00 mov $0x0,%eax
N 400504: 5d pop %rbp
. . 400505: c3 retq
Let’s call the function func() .
E.g. char *a = func() N
In this situation, nothing is returned??? N
Becaus? we are'allocati?g string on the s?ack, and then . 55 pUSh %rbp
returning a pointer to it. When the function returns, any . o o
stack allocations become invalid, the pointer now points to a . 48 89 e5 mov 6rsp,orbp
region on the stack that is likely to be overwritten the next °, 48 83 ec 10 sub $0x10,%rsp array size, bytes allocated
time a function is callgd. Once Fhe function returns values . b8 00 00 00 00 mov $0x0,%eax
arg popped and the calling fgnctlén won’t get anything o? ., e8 ce ff ff ff callq 4004e6
pointer would point to some junk in the memory. Hence pointer .. ..

pointing to invalid data.

In this situation: Either allocate the string on the stack on
the caller side and pass it to your function:

UDURRANI 10



We can also look at allocation on heap.
If we allocate 10 bytes on heap.

char *var = (char *)malloc(10);
If you assign var to anything e.g. var = “udurrani”;

What happens if var is free’d, destroyed, deleted or it goes out of scope?
free(var)

In this situation var is on stack and the memory allocated is on the heap. At the same time its pointing to invalid memory i.e.
its already free’d or went out of scope. Let me try to re-use it again: printf(“%s\n”, var);

Here var becomes a dangling pointer, its pointing to invalid memory.

Address for free() 400430: ff 25 52 05 20 00 jmpq  *0x200552
400436: 68 00 00 00 00 pushq $0x0
40043b: e9 ed ff ff ff jmpq 400420
400576: 55 push  Srbp
400577 48 89 e5 mov %rsp,%rbp
40057a: 48 83 ec 10 sub $0x10,%rsp
40057e: bf 0a 00 00 00 mov $0xa,%edi
400583: e8 d8 fe ff ff callq 400460 oo oo -> malloc returns a pointer to memory in rax
400588: 48 89 45 8 mov %rax,—-0x8(%rbp)
40058c: 48 c7 45 f8 44 06 40 movg  $0x400644,-0x8(%rbp)
400593: 00
400594 48 8b 45 f8 mov -0x8(%rbp) ,%rax
400598: 48 89 c7 mov %srax,%srdi
40059b: e8 90 fe ff ff callq 400430 <--<-p Free’ing the memory
4005a0: 48 8b 45 f8 mov -0x8(%rbp) ,%rax
4005a4: 48 89 c7 mov %rax,%rdi
4005a7: e8 94 fe ff ff callg 400440 Using the free’d memory again
4005ac: b8 00 00 00 00 mov $0x0,%eax
4005b1: c9 leaveq
4Q05b2: c3 retd

This situation could also be called use after free (UAF)

Vulnerability could happen in a lot of ways e.g. string formatting, lack of input validation and bounds checking,
integer errors, dereferencing a pointer that points to an invalid memory location etc. I will cover more later.

Function Pointers:

Pointer itself is a very important feature of programming. Imagine having a huge data structure that you have to pass to
other functions. It would make it much more efficient if you pass the address to that data structure isn’t it? Well if you’'d
like you can keep passing the whole data structure but I won’t recommend. It makes it easier to pass large block of memory to
functions. It also makes thing more speedy.

You can also get an address of a function and use it as call back. You can pass a function to another function.

Functions are pointers that points to a block of code. You can also have a function pointer i.e. a pointer pointing to a
function. Why oh why do I do that?

Call backs to another functions
You use any object oriented language like Ruby or Python where you never have to worry about stack or the heap or dynamic

allocation? In the background you use function pointer to simulate objects and classes. A major use case is in asynchronous
programs as well, where one can call a function and pass it a function pointer

Look at the the following function.
void functionB(int a)

printf("sd\n", a);

}
Lets make a function pointer The only reason I covered function pointers here is
because exploits normally either overwrite return
void (xfoo)(int); address (stack) or function pointers (heap). We will
foo=&functionB; cover that in-depth later. This paper is only to cover
basic stuff. In the second phase I will cover more about
How do I call it? function pointers.
(xfoo) (12);
push  S%rbp

mov %rsp,%rbp
sub $0x10,%rsp
movq  $0x40055c,-0x8(%rbp)

mov -0x8(%rbp) ,%rax

mov $0xc,%edi

callg *%rax Function Pointer
mov $0x0,%eax

callqg 40054c @ Normal function called by its address

UDURRANI 11



Exptoii:al‘:ion:

I am sure you must be thinking why talk about vulnerability for so long. The

answer 1s very simple, no vulnerability means no exploit. You need a bug in your

software/application. Even though all bugs cannot turn into exploits but all exploits

are result of a software bug. When attacker is writing an exploit the first rule is to

trigger the vulnerability.

FIRST STEP: Trigger the BUG

After triggering the bug, it only gets more complicated :) You need to find the
code you want to execute and its address! If you remember we talked about data
and instruction (code) separation. Code section in memory 1s Read and Execute.
Data means Read and Write. In memory we have stack, heap, data and code
sections. Heap and Stack sections are not executable. When you use things like int
a = 0; this goes on the stack. For dynamic memory allocation like malloc(), heap
kicks in.

CPU fetches an instruction and executes it but it can ONLY be executed 1f it
has an execute bit on. Its called NX bit. This is how OS can prevent basic
exploitation attacks. We call this feature DEP (Data execution prevention). This

literally means execute code not data.

DEP is a mitigation offered by the 0.

If somehow you got passed DEP, you need to know the address of the code.

All OS's will load functions, libs etc at a random address. If address is random,

UDURRANI

12



attacker can't just land an attack. Attacker has to somehow know the address or by-
pass that layer of randomization. This one is called ASLR (address space layout
randomization).

ASLR 1is another layer of mitigation provided by the OS. What about
prevention against stack overflows? OS has that one as well, its called GC cookie or

a canary. Some of the OS mitigations: DEP, ASLR, GS Cookie etc etc.

Questiown: If OS has all the mitigation, how would an attacker
launch an exploit???

Attackers will use a specific technique to by-pass OS's mitigation.

What are some of the techniques???

ROP, JIT & Heap Spray, Stack pivot etc ...

If you have an application, third party or developed in-house. That application is made according to a certain specification. E.g.
Log-in Unintentional execution
Credentials

Welcome Page

Error Code

DataBase Interface in the background

&
Bug -> Security Flaw -> Vulnerability

. ]
Modify or create new documents
Save or Submlt . - Infenﬁonal EXeCuﬁOﬂ Subvert normal execution flow

This flow is called intentional execution. * Unintentional execution???

Is it possible for me to divert this execution flow? Hence un-intentional execution? To achieve such behavior attacker has to some
how smuggle exploit + malicious code within the data section of the memory E.g: attacker may put together a specially crafted PDF
document and send it to the victim. In this case vulnerable application is acrobreader (version N). Now all attacker has to do is use
a technique to achieve indirect execution i.e. execute the code that exists in the data section.

Simple flow of stack overflow.

ﬂj| o : . —" TRIGGER THE BUG Normally this is not as straight forward.

For an overRun exploit:

-> Buffer Overflow (Remember you have to trigger the bug)
-> This overRun will Overwrite the base pointer, Instruction pointer is next
USE TECHNIQUE -> JMP is used here

-> Payload

Somewhere in there you need to by-pass 0S exploit mitigation

ROP
STAGE-0 € f(‘“)\ 4——— _ HEAP SPRAY
/)
A JIT SPRAY

AT this stage you are compromised. BARA BING BARA BOOM

UDURRANI 13



Recap
™ Find a vulnerability
M Trigger the bug / security flaw
M Use a technique to by-pass OS mitigation
M Make the malicious code (on stack or heap) executable
M Launch the malicious code

M Compromised!!!
Here 1s a very simple flow (Keep on clicking)

http:/ /udurrani.com/ exp(0/Vulnerabil/index.html

Exploits have different kinds but memory corruption exploits are very

complex. It only gets more complex when we get into OS / Kernel level exploits. If

you remember WanaCry (If you don’t then go to http:/ /udurrani.com/ 0fff/
alll.pdf), propagation was done by the exploit. The most critical component of
the whole campaign was the exploit. Without the exploit, there wouldn’t have been
any propagation or lateral movement. No privilege escalation either. The exploit
mainly used SMBv1 transactions to perform read / write IO’s between client and
server. If the request size > SMB_MAX_BUFFER_SIZE, remaining bytes are
processed by trans2 request. The attacker has embedded the exploit code within

that large data. Attacker has to trigger the vulnerability to hijack the flow.

NOTE: The word PROCESS / PROCESSING is the key. Attacker smuggled

in the bad shit code in the data and someone’s gotta process that data, hence the

exploit, GOT I'T????

UDURRANI 14


http://udurrani.com/exp0/Vulnerabil/index.html
http://udurrani.com/0fff/all1.pdf
http://udurrani.com/0fff/all1.pdf

00 00 00 2F FF 53 4D 42 72 00 00 00 00 18 01 68
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 OC 00 02 4E 54 20 4C 4D 20 30 2E

SEQUENCE INFORMATION (1308443050, 3171755759)

URG:0 | ACK:1 | PSH:1 | RST:@ | SYN:@ | FIN:0|

31 32 00

(UDURRANI)
(DATA PUSH!) IS COMING FROM

PORT INFORMATION (445, 55098)
SEQUENCE INFORMATION (3171755759, 1308443101)

URG:0 | ACK:1 | PSH:1 | RST:@ | SYN:0 | FIN:0|
00 00 00 7F FF 53 4D 42 72 00 @0 00 00 98 01 68
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 11 00 00 03 32 00 01 00 04 11 00 00
00 00 01 00 00 00 00 00 FC E3 01 80 21 49 5C 12
19 6D D3 01 4C FF 00 3A 00 34 DC E4 05 FA 10 A8
49 A8 DF 42 9D 56 CC B2 DF 60 28 06 06 2B 06 01
05 05 02 A0 1E 30 1C A@ 1A 30 18 06 @A 2B 06 01
04 01 82 37 02 02 1E 06 OA 2B 06 01 04 01 82 37
02 02 0A
(UDURRANI )

(DATA PUSH!) IS COMING FROM

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

TO IP ADDRESS 172.16.177.190

TO IP

PORT INFORMATION (56590, 445)
SEQUENCE INFORMATION (3070297144, 1489711040)

URG:@ | ACK:1 |

FF
00
00
00
00
00
00
00
00

PS|

F7
00
00
00
00
00
00
00
00

FE
00
00
00
00
00
00
00

53
00
00
00
00
00
00
00

4D
00
00
00
00
00
00
00

42
00
00
00
00
00
00
00

H:1

00
00
00
00
00
00
00
00

4D
E8
81
DO
OE
69
74
6D
Cc3
C1l
C1l
8E
8A
8A
00
00
7C

5A
00
3
00
1F
73
20
6F
D2
E2
E2
CB
E1l
El
00
00
E7

URG:0 | ACK:1 |

| RST:

00
00
00
00
00
00
00
00

(UDURRANI)

@ | SYN:0 | FIN:
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

ADDRESS 172.16.177.129

®l  SPRAY MEMORY

172.16.177.190
PORT INFORMATION (4444, 49161)

SEQUENCE INFORMATION (907179468, 1031033040)
PSH: 0

| RST:0 | SYN:Q |

TO IP ADDRESS 172.16.177.134

FIN: Q|

41
00
38
00
BA
20
62
64
EB
64
5A
16
65
5B
00
00
19

52
00
07
00
OE
70
65
65
F9
AA
AA
AA
AA
AA
00
00
5A

55
00
03
00
00
72
20
2E
87
A3
8D
96
99
86
00
00
00

48
5B
00
00
B4
6F
72
oD
B3
B3
B3
B3
B3
B3
00
00
00

89
48
48
00
09
67
75
oD
85
85
85
85
85
85
00
00
00

E5
81
89
00
()]
72
6E
0A
AA
AA
AA
AA
AA
AA
00
00
00

48
3
3B
00
21
61
20
24
87
C1
8E
87
8A
52
00
50
00

83
B3
49
00
B8
6D
69
00
B3
E2
CB
B3
E1l
69
00
45
00

EC
18
89
00
01
20
6E
00
85
65
02
84
59
63
00
00
00

20
00
D8
00
4C
63
20
00
AA
AA
AA
AA
AA
68
00
00
00

78
00
6A
F8
D
61
44
00
87
FB
86
4E
86
87
00
64
Fo

83
FF
04
00
21
6E
4F
20
B3
B3
B3
B3
B3
B3
00
86
0

E4
D3
5A
00
54
6E
53
00
85
85
85
85
85
85
00
05
22

Fo
48
FF
00
68
6F
20
00
AA
AA
AA
AA
AA
AA
00
00
20

MZARUH..H.. H...

is program canno
t be run in DOS
mode....$uevunns

seaYeeaas

.Rich....

UDURRANI

-’

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 09 00 00 20 82 2D 00 00
00 04 00 00 46 00 54 00 84 2A 8F 59 B2 99 08 12
00 00 00 00 00 00 00 00 11 00 08 00 02 00 00 00
01 00 03 06 00 OC 29 31 Al 58 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OC
29 9A F2 8F 00 0C 29 31 Al 58 08 00 45 00 2D 74
F8 1B 40 00 40 06 5A 07 AC 10 B1 BE AC 10 Bl 81
ED 5F @1 BD 24 BD 7D 07 CD 93 F4 94 80 10 00 ED
E8 C7 00 00 01 01 08 OA 00 @9 C7 8A @1 15 34 63
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
(UDURRANI)

PUSH!) IS COMING FROM
PORT INFORMATION (445, 55098)
SEQUENCE INFORMATION (3171755890, 1308443186)

URG:0 | ACK:1 |

00
00
40
6E
45
73
57
37
72
00
55

A3
00
00
00
00
00
00
00
00
00
00

FF
00
03
64
6E
65
69
20
69
57
50

53
)
FF
00
00
)
)
)
)
00
)

4D
00
00
6F
74
20
6E
45
73
4F
00

: FE
08
00
00

00
00

<3
1)

. 00
00

TO IP ADDRESS 172.16.177.190

PSH:1 | RST:@ | SYN:@ |

42
00
A3
00
00
00
00
00
00
00

73
00
00
77
65
37
64
6E
65
52

00
00
00
00
00
00
00
00
00
00

00
00
00
73
72
36
6F
74
20
4B

00
00
7A
00
00
00
00
00
00
00

00
00
00
20
70
30
77
65
36
47

98
00
11
00
00
00
00
00
00
00

07
00
57
37
72
30
73
72
2E
52

FIN:O|

co
00
00
00
00
00
00
00
00
00

15



Once the payload is at the kernel layer (SMB is processed by the kernel), the
payload uses APC to launch the backdoor in the userSpace and then wanaCry

starts its magic.

SMBv1 PORT 445

APC TO REACH USER SPACE

LSASS.exe etc
KERNEL

Kernel resident payload

Let’s focus more on this lateral movement: If we remove the exploit part from
wanaCiry, there 1s no lateral movement or privilege escalation. An infected machine
can copy the payload to other machines 1.e. internal or external. Let me show you

how the payload tried to scan external ip addresses.

http:/ /udurrani.com/ 0fff/capt/a.html

http:/ /udurrani.com/0fff/capt/b.html
http:/ /udurrani.com/ 0fff/ capt/c.html

Zero-day OS / kernel exploits are not easy to detect by any

security provider.

UDURRANI 16


http://udurrani.com/0fff/capt/a.html
http://udurrani.com/0fff/capt/b.html
http://udurrani.com/0fff/capt/c.html

UDURRANI

17



