
Memory Exploitation
UDURRANI

I have divided this project in 2 phases.

- Exploit

- Malware (Not in this writeup)

I will cover exploit first since not many security products deal with exploits.

They are mostly focusing on malware. Keep in mind you don't need to master all

the concepts. Just a few fundamental concepts so you get a feel of how things work.

Before we really get into exploit, lets cover few things that would help us as we

move forward.

To understand Security, you should understand Computer architecture,

especially Memory and CPU.

CPU:

We call it the centerpiece / the brain of the computer. It consists of transistors

and channels through which current flows. Every type of CPU has its own

language i.e. machine language. Machine language is very complex in nature.

Thats why we have programming languages, where a compiler or an assembler

converts a program to machine language. This component takes care of executing

instructions. Let's say instructions of a currently loaded program / process.

UDURRANI !1

Instruction???

Instruction is a sequence of 0's and 1's that describes an operation e.g. ADD or

COMPARE. Instructions could be carried out in multiple ways: Read, Write,

Calculate, Jump , Add numbers, Test, Signals etc.

Instructions could have data they act on, which is stored in a register. This is

the fastest way for CPU to access data even though CPU has limited number of

registers. A register is a storage device that can "store," or "remember a single

word. Its very important to understand this distinction i.e. instructions (code) and

data. Data normally flows as variables in a programming language. If I ask you to

add 10 to another integer value e.g. 10 + 30. What does that say? 10 and 30

represents data and ADD would represent an instruction. Computers take this sort

of distinction very seriously. We will get into it later but for now just remember data

and code.

This data has to flow from storage to cpu through some sort of a transmitting

means. This is done via BUS. An instruction is represented as a binary, 16, 32, or

64 bits wide. Before execution it must be decoded. This is handled by Control Unit.

So lets remember:

CPU's life is to fetch, decode and execute. In some cases it can store.

Data & code separation

Transmission is done via a BUS

Data & Code creates the actual output i.e. the execution flow.

UDURRANI !2

I just mentioned fetch and execute. Where does it fetch from? Answer is

simple, the storage. Didn't I say that registers are used for storage? indeed! But

registers are limited and I would like to put more data some where. What about the

main memory i.e. RAM? Thats right. RAM can store much more. This means

CPU can fetch instructions from the memory and execute them. CPU is the biggest

consumer of computers main memory.

MEMORY:

This component is responsible for storing data and instructions. Unlike

registers memory is not as close to the CPU. Registers are great if one has to use a

data value quiet often in the program. Its not necessary that instructions or data

should be adjacent to each other, it could be completely random, hence random

access memory (RAM). Memory is used to hold data and software for the

processor.

Memory follows a concept of flip-flop. Memory holds a value of 1 when

capacitor is charged and 0 when dis-charged. Capacitor is like a bag that holds or

stores charge. In other words it holds electrons. To store 1, electrons move towards

the bag i.e. bag is filled with electrons. To store 0, its emptied out. You may ask who

will charge and dis-charge? CPU and memory controller (Please lookup memory

controller). Transistor and a capacitor are paired to create a memory cell, which

represents a single bit of data. The capacitor holds the bit of information -> a 0 or

a 1. Transistor doesn't store data, its used for signal amplification.

Enough about electronics :)

UDURRANI !3

The memory holds two types of information: data items and programming

instructions. The two types of information are usually treated differently, and in

some computers they are stored in separate memory units. Memory location is

identified by an address i.e. if you would like to get to a location you need that

address. To speed things up another component called slave memory or cache

memory could also be used. Let me try and put more sense into it.

Lets assume, CPU is a Small property in Boston MA, However CPU has very

limited space, as property in Boston is very expensive. So we buy a larger property

outside of Boston, some where in Western MA, where we can store a lot of items.

(Let's call this new property in Western MA, memory). Property in Western MA is

much cheaper than Boston but for CPU to get items from western MA (memory)

could take a long time.

What do we do?

We need to buy a small place where we can put some of the items that CPU

require more frequently. We can buy another property somewhere between Boston

(CPU) and Western MA (MEMORY). Let’s say the 3rd property is in Worcester

MA. Worcester MA is the cache :)

UDURRANI !4

UDURRANI !5

STACK

The program stack is an area of memory that supports the execution of

functions. When a function is called, a stack frame is created and pushed onto the

program stack. When function terminates, stack frame is popped off the stack. A

stack pointer usually points to the top of the stack. A stack base pointer (frame

pointer) is often present and points to an address within the stack frame, such as the

return. The stack buffer has an associated data item, the stack pointer, SP, which

contains the address of the top of the stack. This address is of course increased (or

decreased) when data is pushed (or popped). The addresses of the different data

items stored in the stack are simply determined by their distances (offsets) to the

stack pointer. When main() starts, its local variables are allocated in the stack. When

the function returns, it destroys its local variables and the function arguments by

popping them from the stack.

A data element is placed on top of the stack by a PUSH instruction; a data

element is removed from the top of the stack by a POP instruction if the operand

size is 16 bits, then the SP register is incremented/decremented by 2. If the

operand size is 32 bits, then the ESP register is incremented/decremented by 4

push instruction will decrement SP

pop instruction will increment SP

push ebp // Stack pointer points to the top of the stack

ebp, esp // make ebp new esp

UDURRANI !6

mov

Heap

When memory is dynamically allocated, it comes from the heap. Heap

memory is dynamically allocated at run-time by the application. Let's allocate some

memory to foo.

char *foo = (char *)malloc(30) // foo in this case is a pointer.

Allocated memory on the heap MUST be released or freed after use. To free

above allocated memory we use free function call.

free(foo)

Linked lists and queues are enabled using heap section of the memory.

Program Counter / Instruction Pointer:

PC or EIP 1 IP I RIP plays an important role. CPU includes a program

counter whose output is interpreted as the address of the instruction that should be

executed next in the current program. This way CPU knows what instruction to

execute next. This is a very important concept so please make sure you do more re-

search on this one.

A little about registers: A register is a storage device that can store or

remember a value. E.g
General and data-segment addressing: , EAX, EBX, ECX, ESP, EBP, ESI, EDI

Segment registers: CS, DS, ES, SS

UDURRANI !7

I would suggest to look them up and get some info regarding registers.

VULNERABILITY:

Programming is an art. Some developers are good at it and some are not.

Either way they make mistakes, even the best of developers. Writing code is no

joking matter. Most production code has to interface with other code, other

libraries, files, memory etc. This means data is passed between all these

components. If this data is passed incorrectly or handled incorrectly, this could

have shitty results. If I ask you to have a buffer that can hold 10 bytes

Using a language like C or C++ you would do something like.

 char array[10] // Where variable name is array.

What if you try to put data into this array that exceeds the actual size of

buffer??? What happens to the exceeded data??? In this situation extra data can

overflow into adjacent memory locations corrupting valid data. This sort of a

behavior is called Stack Overflow. Important thing to remember is: Stack cannot

handle this situation and could lead to change of execution flow of the program.

Program itself would have no clue what the hell is going on. Changing program

control flow execution is a dangerous matter.

Overflow can happen in heap region as well, allowing an attacker to overwrite

heap-stored data. If allocated region of the memory is freed or deallocated more

than once, could cause code injection. Another example could be use after free.

char *foo = (char *)malloc(10)

 free(foo);

UDURRANI !8

What if same memory region is used again i.e after free'ing it or for some

reason it went out of scope. You may ask how would it get out of scope if we

haven't free'd the memory? On the other hand, what if you don't free the memory?

What would happen? In that situation you can run into a memory leak.

UDURRANI !9

UDURRANI !10

UDURRANI !11

Exploitation:

I am sure you must be thinking why talk about vulnerability for so long. The

answer is very simple, no vulnerability means no exploit. You need a bug in your

software/application. Even though all bugs cannot turn into exploits but all exploits

are result of a software bug. When attacker is writing an exploit the first rule is to

trigger the vulnerability.

FIRST STEP: Trigger the BUG

After triggering the bug, it only gets more complicated :) You need to find the

code you want to execute and its address! If you remember we talked about data

and instruction (code) separation. Code section in memory is Read and Execute.

Data means Read and Write. In memory we have stack, heap, data and code

sections. Heap and Stack sections are not executable. When you use things like int

a = 0; this goes on the stack. For dynamic memory allocation like malloc(), heap

kicks in.

CPU fetches an instruction and executes it but it can ONLY be executed if it

has an execute bit on. Its called NX bit. This is how OS can prevent basic

exploitation attacks. We call this feature DEP (Data execution prevention). This

literally means execute code not data.

DEP is a mitigation offered by the OS.

If somehow you got passed DEP, you need to know the address of the code.

All OS's will load functions, libs etc at a random address. If address is random,

UDURRANI !12

attacker can't just land an attack. Attacker has to somehow know the address or by-

pass that layer of randomization. This one is called ASLR (address space layout

randomization).

ASLR is another layer of mitigation provided by the OS. What about

prevention against stack overflows? OS has that one as well, its called GC cookie or

a canary. Some of the OS mitigations: DEP, ASLR, GS Cookie etc etc.

Question: If OS has all the mitigation, how would an attacker

launch an exploit???

Attackers will use a specific technique to by-pass OS's mitigation.

UDURRANI !13

Recap

Find a vulnerability

Trigger the bug / security flaw

Use a technique to by-pass OS mitigation

Make the malicious code (on stack or heap) executable

Launch the malicious code

Compromised!!!

Here is a very simple flow (Keep on clicking)

 http://udurrani.com/exp0/Vulnerabil/index.html

Exploits have different kinds but memory corruption exploits are very

complex. It only gets more complex when we get into OS / Kernel level exploits. If

you remember WanaCry (If you don’t then go to http://udurrani.com/0fff/

all1.pdf), propagation was done by the exploit. The most critical component of

the whole campaign was the exploit. Without the exploit, there wouldn’t have been

any propagation or lateral movement. No privilege escalation either. The exploit

mainly used SMBv1 transactions to perform read / write IO’s between client and

server. If the request size > SMB_MAX_BUFFER_SIZE, remaining bytes are

processed by trans2 request. The attacker has embedded the exploit code within

that large data. Attacker has to trigger the vulnerability to hijack the flow.

NOTE: The word PROCESS / PROCESSING is the key. Attacker smuggled

in the bad shit code in the data and someone’s gotta process that data, hence the

exploit, GOT IT????

UDURRANI !14

http://udurrani.com/exp0/Vulnerabil/index.html
http://udurrani.com/0fff/all1.pdf
http://udurrani.com/0fff/all1.pdf

UDURRANI !15

Once the payload is at the kernel layer (SMB is processed by the kernel), the

payload uses APC to launch the backdoor in the userSpace and then wanaCry

starts its magic.

Let’s focus more on this lateral movement: If we remove the exploit part from

wanaCry, there is no lateral movement or privilege escalation. An infected machine

can copy the payload to other machines i.e. internal or external. Let me show you

how the payload tried to scan external ip addresses.

http://udurrani.com/0fff/capt/a.html

http://udurrani.com/0fff/capt/b.html

http://udurrani.com/0fff/capt/c.html

Zero-day OS / kernel exploits are not easy to detect by any

security provider.

UDURRANI !16

http://udurrani.com/0fff/capt/a.html
http://udurrani.com/0fff/capt/b.html
http://udurrani.com/0fff/capt/c.html

UDURRANI !17

