
LockerGoga

Payload is executed

Payload moves itself to %TEMP% location

Payload tries to logoff the user

Payload starts spawning itself (subprocess) to encrypt files, it also creates a mutex

After encrypting files, the payload runs net command to change the user password

Payload uses cipher utility to overwrite deleted areas on the disk. Normally ransomware

uses vssadmin to delete the shadow copy

Payload deletes itself

User can’t login as the password is already changed

Summary

C:\Windows\system32\cmd.exe /c move /y C:\Users\foo\Desktop\PAYLOAD.exe
C:\Users\foo\AppData\Local\Temp\tgytutrc9935.exe // NAMING CONVENTION: tgytutrc<RAND4DIGIT>
C:\Users\foo\AppData\Local\Temp\tgytutrc9935.exe -m
C:\Windows\system32\logoff.exe 0
C:\Users\foo\AppData\Local\Temp\tgytutrc9935.exe -i SM-tgytutrc -s

MUTEX

Initial commands

https://www.youtube.com/watch?v=whPeRFMBhzY

I developed a small ransomware payload in 2017 that demonstrated this technique, where the

file encryption job was handled by a worker pool and parent only assigns the tasks and also the

frequency for file encryption per process or thread. Click on the following link for the video

https://www.youtube.com/watch?v=whPeRFMBhzY

Flow for the impatient

More info

Back in january, hackers infected another company in France with a very similar payload.

Payload used a spawned process (spawning itself with a different command line) to encrypt

files. This payload is using similar technique but this time its using a signed executable, must

be a stolen cert.

I don’t know much about the propagation component of the

attack but one could assume that the attacker stole the AD

database along with the required hives.

Payload is looking for the following file extensions

.doc,.dot,.docx,.docb,.dotx,dotb,.wkb,.xml,.xls,.xlsx,.xlt,.xltx,.xlsb,.xlw,.ppt,.pps,.pot

.ppsx,.pptx,.posx,.potx,.sldx,.pdf,.sql

Other than those, it can encrypt executables as well. It has the ability to remove file locks and encrypt

some of the running executable images as well. Matrix ransomware also used this technique by using

a sysinternal tool. For more info on matrix ransomware click on the following link

http://udurrani.com/exp0/matrix_ransomware.pdf

Story of malware is within the payload itself, so let’s begin

http://udurrani.com/exp0/matrix_ransomware.pdf

It uses C++ crypto++ to encrypt all files.
memset(key, zero-it-out, sizeof(key));
memset(iv, zero-it-out, sizeof(iv));
DataStruct(key, sizeof(key), iv);

StartEncryption [STREAM] and pass the struct and file

CreateMutexA(0x0, 0x0, “MX-tgytutrc") // Returns a HANDLE

Once the subprocess is initiated, it creates a mutex (if not present in the memory). If its already there

the payload will exit

ReleaseMutex(HANLDE) // expects a non-zero value

CreateProcessW ("C:\Windows\system32\logoff.exe", "C:\Windows\system32\logoff.exe 0", NULL,
NULL, FALSE, 0, NULL, NULL, …)

Stage 1 tries to logoff the user

CreateProcessA ("C:\Users\foo\AppData\Local\Temp\tgytutrc3003.exe", "C:
\Users\foo\AppData\Local\Temp\tgytutrc3003.exe -i SM-tgytutrc -s ", NULL, NULL, FALSE, 0,
NULL, NULL, …)

Stage 1 initiates / spawns a subprocess to start encryption

Subprocess looks for the mutex passed to it as an argument

Encryption

IPC is using sharedMemory via CreateFileMapping(). It uses 0xffffffff or simply INVALID_HANDLE_VALUE as
the 1st argument.

 CreateFileMappingA(0xffffffff, …); // FileMapping via paging file

The spawned process uses OpenFileMappingA() to get info from the sharedMemory and
encrypt file(s). Both processes will share the same page of physical storage. In
simple words, the attacker has mapped the same file into 2 address spaces, however
both these processes are using the same page of physical storage.

Subprocess uses the library called Crypto++ to encrypt files. Its stream based encryption i.e.

it will act on stream of data. It uses NtReadFile(), acts on the data as streams and then uses

NtWriteFile() to modify data.

Base64 text shown above is written to the sharedMemory buffer by the parent process, while the subProcess reads
the path and encrypts the file(s). In the process of encryption, parent process spawns multiple sub processes.

InterProcess Communication

Once the data is encrypted, the parent process uses net command to change the user password.

Password is passed as w_char

 u”HuHuHUHoHo283283@dJD"

FUNC_1(“netsh.exe", 0x9);
FUNC_2(“interface”, …, "interface", edi, "DISABLED", &val, …);

 FUNCTION_TO_CALL_NET_COMMAND(“net.exe”, 0x7);

Function is called to run the net.exe command, where first function

 parameter is the command name

Payload is able to disable network interfaces as well. First it retrieves adapter info i.e. depending

on the family e.g. AF_INET, AF_INET6 etc. It allocates a buffer and calls GetAdaptorAddress. This

function returns an int value. Address information is retrieved from the structure passed to the
function i.e. IP_ADAPTER_ADDRESSES. This is a linked List.

 if (GetAdaptersAddresses(0x0, 0x1c, 0x0, POINTER_TO_BUFFER, &val) == 0x0) // 0x0 means ipv4 || 6.

Deleted Files

Most ransomware uses VSSADMIN to delete the shadow copies. This payload calls a CIPHER

utility. This utility will write random date to deleted sections.

c:\windows\system32\cipher.exe /w: C:\

This /cmd file contains few things like sleep, delete the *.cmd script etc.

All files are encrypted with a .locked extension

At the end, the payload runs a .cmd file thats sitting in the %TEMP% location.

 payloadName.exe.cmd

Let me explain this a bit. OS keeps track of all the files through a pointer. Think of it as a mark that tells the OS where the file
begins and where it ends. What if you delete this pointer???

FileSystem will think there is no file at that location. NOTE: Only the pointer is removed, not the file itself.

If you want to remove the file traces, you need to overwrite that sector. If you don’t try to retrieve the deleted files instantly, any
random data could overwrite that location in the sector. This is what the cipher.exe (Microsoft utility) is doing for you. This could
also be done by writing a tool that writes random data to the disk but it won’t be 100%. The more random data you write the more
chances to overwrite the file(s)

Ransom note

Conclusion

Hire smart folks
Secure your AD

STAY AWAY FROM RANSOMWARE

