
Houdini
UDURRANI

Summary:

- Attacker uses a worm builder to create a VBS payload

- Attacker obfuscates the payload

- Attacker embeds the obfuscated VBS file into a binary

- On execution, the binary spawns WSCRIPT and launch the VBS script

- VBS file starts beaconing the C2 server and creates an ESTABLISHED tcp tunnel

- The compromised machine tells the C2 server that its ready for further instructions

- C2 server sends instructions for further malicious activity

!1

Automated Flow:

Houdini first stage launches two wscript instances.

!2

Binary Information and compilation date:

Payload will drop and create the following files

Two similar VBS scripts, installation.vbs & siamhk.vbs and a ‘.jpg’ image. Once the

payload executed, it will present this jpeg to the user, so user may think that it was indeed an

image. Here is the blurred out version.

VBS file installation.vbs is added to the startup folder

!3

Basic Network Flow:

Rat will beacon the C2 server and provide the basic information with a POST request,

indicating that its ready for further instructions. Initial information is sent as part of User-Agent

header. Delimiter used is the pipe ‘|’ and first field is the victim’s ID (E8643907)

!4

Registry activity:

Obfuscation:

VBS script has a variable with the following value (I couldn’t put the complete string)

This definitely looks like base 64. So let’s go ahead and get a small chunk of the above

string and try to decode it. Focus on the following green text (Decoded pattern)

Basically its double base64 encoded. Now we get another layer of obfuscation. The variable

DZCLOVER contains some sort of a delimited pattern. Delimiter here is ‘|dz|’. Also it applies

the following conversion.

!5

We can easily write a small script to remove ‘|dz|’ and convert each

integer value to CHR(). I am young enough to use python, so I went a head

and wrote some C code to do the job.

Eventually we got the following (Complete script is pretty long but this should give you an

idea)

Now we move on to the Command & control and understand how it works.

!6

Command & Control:

This part is pretty interesting. The attacker uses a rat builder first to set things up. Once

things are all set, attacker distributes the payload. Click friendly victims click on the payload and

BOOM!

Here is how the attacker view things. Its seriously very user friendly.

Once connected, WSCRIPT will try and communicate with the C2 every N seconds. This

part is configured by the attacker. Attacker is using milliSeconds here for the following variables.

Victim machine keeps retrying every N intervals until the connection is made. Remember

that VBS runs in the address space of WSCRIPT. Thats why you will notice WSCRIPT is

making connections to the C2 server. In the following situation victim machine 10.0.0.188 keeps

sending SYN packet to C2 10.0.0.10 and keeps getting a RST.

!7

Attackers can bring the C2 service down every now and then. But let’s move on to the part

where C2 is up and running. In socket world, when the ip is received its changed to the dot

notation via inet_addr(). So in our case inet_addr ("10.0.0.188") will be 3154116618. Similarly

htonl (3154116618) will convert to host byte order. This returns uint32_t value. If you want to

test it out you can use %zu for formatting. Once connection is established, send() recv() is used to

transfer data back and forth and shutdown (socket_descriptor, SD_SEND) is used.

 I have no idea why I just wrote that last part. Moving ON …

Victim machine makes a connection to C2 and say “Hey I am ready”

C2 replies with the following

C2 will Finish the communication and let the victim know that there is nothing to be done

and sleep time is 5000 milliSeconds i.e. 5 seconds (Time is configurable)

!8

WSCRIPT will wakeup after 5 seconds and ask C2 if there is anything to be done? This

time the C2 has an instruction for the victim. Following is a 74 bytes payload (with FIN bit set)

that tells the victim to execute IPCONFIG command and provide the result back to C2.

Here the POST request says is-cmd-shell and NOT is-ready.

!9

Result is sent back to the C2 server

If the attacker wants to enumerate all files and folders, the following message (376 bytes)

will be sent.

!10

For most of the execution the flow looks like (example to execute calc.exe)

On the C2 side, the listener executes the function j_ShellExecuteA, which jumps to the

actual ShellExecute function.

C2 can also have other code paths E.G.

!11

Conclusion:

!12

