
MSWord to Backdoor
UDURRANI

!1

Summary

- User receives a macro enabled MSWord document

- User opens the document

- Macro is initiated

- Macro downloads a malicious, second stage payload and executes it

- Malicious payload initiates a reverse shell with the C2 server and wait for further

instructions.

Let’s draw it out by looking at the flow

!2

As you can see the flow above, the entry point is a weaponized word document. Word

document has an obfuscated macro. Once we de-obfuscate the macro, it looks like a very simple

and straightforward script.

The script is very easy to follow:

- Download an executable

- Initiate the executable in the background

- Create a firewall rule using netsh command to add malware as an allowed program.

The macro tries to download the second stage payload by using a simple HTTP GET

request. Let’s look at the network communication.

DNS:

!3

GET Request

Response showing start of the malicious payload

!4

At this stage, macro’s life is over. It downloaded and spawned the malicious executable.

NOTE: A malicious executable is the worst thing that can happen to you. I call this stage

“shit hitting the fan stage”

Now, that every one is officially grossed out, let’s look at the downloaded executable.

Basic info i.e. file size, hash, type, arch etc

The payload has made it to the process stack and is trying to make a reverse shell to the C2

server. Here is the network communication to C2 server:

DNS:

!5

123.19.255.199, in this case is the C2 server. Let’s look at some network IOC’s in case you

are interested

!6

If you look at the traffic trace shown above.

- Macro talks to 24.177.66.19 i.e. an ip address in the United States area.

- Executable talks to 123.19.255.199 i.e. an ip address in the Vietnam area.

Let’s look at the reverse shell activity:

Following shows the initial 3-way handshake, followed by victim machine giving out some

basic information.

!7

Usman Durrani

Usman Durrani

What’s being sent out by the malware?????

160ll|'|'|SGFjS2VkX0U4NjQzOTA3|'|'|WIN-RN4A1D7IM6L|'|'|foo|'|'|
18-08-21|'|'||'|'|Win 7 Enterprise SP0 x64|'|'|Yes|'|'|0.7d|'|'|..|'|'|
UHJvZ3JhbSBNYW5hZ2VyAA==|'|'|116inf|'|'|
SGFjS2VkDQpiaW5wYy5kZG5zLm5ldDo1NTU1DQpURU1QDQp0cm9qYW5jdWFiaW5w
Yy5leGUNClRydWUNCkZhbHNlDQpGYWxzZQ0KRmFsc2U=56act|'|'|
dHJvamFuY3VhYmlucGMuZXhlOjE4MDQgUHJvcGVydGllcwA=

SGFjS2VkX0U4NjQzOTA3 = HacKed_E8643907
WIN-RN4A1D7IM6L = MachineName
18-08-21 = Date

SGFjS2VkDQpiaW5wYy5kZG5zLm5ldDo1NTU1DQpURU1QDQp0cm9qYW5jdWFi
aW5wYy5leGUNClRydWUNCkZhbHNlDQpGYWxzZQ0KRmFsc2U is the base64
encoding for the following:

[HacKed
binpc.ddns.net:5555
TEMP
trojancuabinpc.exe
True
False
False
Fal]

Right after the Windows version and servicePack info, you can see a ‘Yes’. This tells the attacker
if victims machine has a webCam available or not. The following class iterates through devices
on the victim’s machine

Later its returns Yes or No.

!8

Usman Durrani

Usman Durrani

Consider this as signaling and messaging between the victim’s machine and the C2 server.
Delimiter is |||.

Payload can capture user-activity in real-time. E.g. when a user opens a text file, following is sent
out to the C2 server.

VW50aXRsZWQgLSBOb3RlcGFkAA== means Untitled - Notepad

act = activity. This tells the attacker that the message contains user’s activity information.

So the signaling part is trying to tell the C2 server that user opened a notepad document where
name = untitled. This means that its a new notepad document. Malware is keeping track of all
the windows user opens E.g. when user is browsing to check gmail, following message is sent out
to the C2 server.

If we decode the payload, we get:

Malware is trying to profile user’s activity in real-time.

!9

KeyLogger and Credential Theft.

Following shows how malware gets the keystrokes in the first place

This part is pretty interesting. Before we get all technical let me decompile some of the code to
make things clearer. Following shows the basic configuration for the malware.

!10

I am not getting into all the variables but would definitely like to cover the following:

 public static string RG = "ddd4b5433513e791cc6f8aad2302ab03";

This variable tells the malware where to store the keyStrokes. Best part is, that the keystrokes are
saved in the registry. Following shows the class kl, which is responsible for key logging activity. It
shows that the malware will use the keyWord kl instead of act to send out the keyStrokes and
credentials

Keystrokes are saved in the registry using RG variable (string)

!11

Here is the real-time capture of the keystrokes in the registry

Messaging with the C2 server sending out keyStrokes.

Screen Shots

Decompiled code to get screenshots on the victim’s machine.

!12

Let’s look at the decompiled code that shows how the payload is profiling users
activities

Decompiled code that sends and receives information from the C2 server

OK.ENB() and OK.DEB() are used to encode and decode base64. It requires a
string as parameter.

Code to create a firewall rule as allowed program.

!13

Conclusion:

Such payloads are very efficient and can be used as multi-purpose malware. This particular
payload is developed and improved over-time. Its also capable of:

- Initiating a ransomware
- Locking the screen
- Launching remote desktop
- Running commands
- Uploading and downloading later stage payloads

Payload is diverse in a way that it could be launched in any environment e.g. Govt, business,
finance, general data theft, ransomware etc. Its always good to have:

- Good end-point security
- Efficient firewall and network layer visibility
- Automate your security and logging
- Educate the user not to click on everything that moves.

!14

